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CHAPTER I. INTRODUCTION AND
EXECUTIVE SUMMARY

h! During 1980, JAYCOR has continued its modeling of the implosion

dynamics and radiative output of diode-imploded annular plasmas, in

close coordination with work ongoing at the Naval Research Laboratory.

This report treats three areas of advance during the 1980 effort:

(I) improvements to the 1-D strongly-coupled plasma implosion and radia-

tion code SPLAT and results of radiative yield studies using the code;

(II) development of formalism for solving the field penetration/skin-

depth problem in an inhomogeneous, time-varying imploding conductor in a

plasma-loaded diode; (III) circuit equation and scaling of hard radiation

in the presence of fully developed sausage instability (beading) of the

assembled plasma. In addition, a short section (Chapter V) is devoted to

work In progress: high-accuracy matrix inversion techniques and inter-

polators for solving the generalized Hertz vector equations used in II

above, and for following CRE equations and diffusive behavior in general;

and, beginning plans for modifying 1-D MHD codes, making them compatible

with the field-diffusion and corona programs and with CRE radiation

packages.

I. The code improvements to SPLAT are:

(A) a rudimentary two-bin spectral resolution of the radiative

output (formerly only total radiated energy was shown).

This still leaves continuum radiation separate, however,

and in neither spectral bin.

(B) scaling laws (Eqn's. 1 abc, 2ab) for density and electron

temperature-dependence of the low-energy and high-energy

radiative yields Y< and Y);

(C) separate opacity/escape treatments for the three spectral

categories;
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(D) more realistic exchange of energy between flow kinetic energy

and thermal, during and just after the "collection" or mixing

process;

(E) energy-conserving averaging of T and T when these twoe i
attempt to develop large rapid oscillation; and finally

(F) incorporation of a CRE radiation package for Argon.

Yield studies for Aluminum radiation vs wire array mass, initial

radius, and current penetration radius have been done, and these compla-

ment earlier studies of the variation with peak voltage and generator

risetime. The total yield is optimized at a certain mass, although 
Y>

optimizes generally at a considerably lower mass, as physically expected

since large masses cannot be heated to the required temperatures. Peak

T of course decreases with increasing load mass, while the peak density-e

squared increases, until the mass is too large to be imploded in the

required time. Other parameters being equal, an optimum initial radius

is seen for both YTOT and Y >; larger initial radii have lower peak

temperatures because the assembly occurs after the current has decayed -

the plasma coasts in rather than still being strongly squeezed at assembly.

Current-crowbarring may weaken or shift this optimum. Smaller-radius

loads of the same mass implode too quickly and tend to be cool, opaque and

subject to Simple Collapse, with mostly blackbody losses. Intermediate

radius loads exhibit well matched, Pause-and-Collapse implosions in which

the temperatures are high enough to forestall immediate collapse and the

densities are high enough for significant radiation but low enough to

allow the radiation escape rate to match that of kinetic energy to thermal

conversion.

The dynamics of the radiation pulse mirrors the temperature-dependence

of the radiation output curve, its multiple peaks representing qualita-

tively a time history of Te . A single peak is characteristic of low

k6



temperatures, ascending and descending the low-temperature side of the

L-shell peak. Double-peaked or triple-peaked radiation pulses tend to

be correlated with higher K-shell yields, although in real plasmas

thermal gradients, i.e., T e(r), may tend to diffuse and merge the individual

peaks. (SPLAT is isothermal in the core plasma.)

II. The electric and magnetic field penetration into the imploding, time-

varying plasma influences the thickness of the current-carrying region and

the ratio of classical (core) to nonclassical (corona) currents. This

affects the circuit relation, heating rates, and the matching of the

implosion to the driver. To solve this problem, one considers first the

coupled wave-diffusion equations in E and B, and combines them to form a

single differential equation in a higher order potential Z, which is a

generalization of the Hertz vector in classical electromagnetic cavity

theory. The equation for 7, its well-posed boundary conditions, and

special techniques for its computational solution, have been developed

during this past year's contract effort, and are reported in Section III

of this report, with mathematical details largely relegated to appendices

A-D. As presently handled in the SPLAT code, magnetic diffusion is frozen

in at an arbitrarily chosen value at early time (when the conductivity

should be low), because the plasma conductivity rises to exclude further

field penetration. SPLAT code results are reasonably sensitive to the

current penetration, motivating us to do this feature in a more self-

consistent way. But the Hertz potential equation requires sophisticated

computer techniques which are being developed under the 1981 funding.

III. Section IV of this report treats beaded discharges and the implica-

tions for the hard component of the radiation. It assumes that the fully-

developed nonlinear stage of the sausage instability necks the plasma

column off in many places to produce relatively low-density regions.

The condition for nonclassical conduction in these regions is remarkably

lenient at high temperature, so we investigate the consequences of the

regions being nonclassical at all radii, At high E-fields, this gives

7



lower current than with classical conduction, but gives greatly enhanced

ohmic heating, to tens of key, and this energy is deposited in the

denser beads, producing hard radiation. Depending on the E-field pene-

tration, which is enhanced by the unstable fluctuations, this effect may

produce high power levels of such radiation, and offers the prospect of

copious K-shell radiation from plasmas whose mass is too large to allow

the temperatures required for thermal K-shell emission. The efficiency

is high if much of the voltage drop occurs in the low-density regions

between beads, and if these regions are long enough to allow adequate

heating before deposition.

A short description of ongoing work is contained in Section V of

this report. Two areas are under development: high-order interpolation

techniques, which are necessary for computer solution of the magnetic

field diffusion problem but also useful in radiation modeling and MOHD

codes, and the modification of a 1D ?4HD code to treat the dynamics of

low-mass higher-temperature imploding plasmas which are not "strongly-

coupled" and thus not properly described by the SPLAT code. (Typical

Argon implosions, for example, probably do not have the viscosity neces-

sary for the SPLAT description.) Because of the potential importance

of the field fiffusion and radiation processes, we are working toward

making the MilD code interface easily with the generalized Hertz-potential

solver and the local temperature equations with CRE radiation.

8



CHAPTER II. SYSTEMATIC YIELD-TRENDS RESULTING FROM

THE PRESENT CORE-CORONA MODEL

A. Code improvements over this contract period

The existing simplified core-corona implosion model1 has been modified

to provide spectral resolution in the radiative yields computed during the

course of a single implosion. Extending previous techniques, the radiative

emission from an aluminum plasma of fixed density and radius is calculated

as a function of electron temperature using the collisional-radiative equili-

brium (CRE) model due to Duston and Davis2 . The size of the cylindrical

radiator is set to a small value, e.g. 0.05 cm, and the output radiated energy

decomposed into three categories: "L-shell" or bv < 1 keV, "K-shell" or

hv > 1 keV, and recombination continuum. One may then derive an equivalent

volume emission rate (e) from this single line source and these results are

represented by

< (no, T) - exp b < (/a)
I ek k e nTO3]

E >(n 0, T) exiJ bk > n(T , 0 .7 )]k (ib)

c (no, Te)=expIE kFBrIn(Te/ 0.5(

at the reference density nI . This emission is then subjected to a density

scaling appropriate to each radiation category, in particular, a reasonable

approximation3 is obtained using

E>,FB (n1/1018 1.5 nI > 1018 (2a)

(n /1018 )2  n1 < 1018

< (i/116) 1.5 016
n / n 10 (2b)

162 16
(n1/1016) nI < 10
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< > FB
Plots of the spectral r'epresentations C, , C are shown in Figure 1> pFB
as P% , P respectively arising from a CRE calculation with
0 19 -3n, - 1.0-10 cm and a radius of 0.05 cm. The curve Prad is the sum of

th niiulrersnain P P> pFBrd
the individual representations P , P P and can be seen to reproduce the

original CRE results (marked by a "(f) to within 5 Z or better over the

temperature domain of interest here. The equivalent volume emission rate

from a black body of the same size (a Te4 / w ro2) is plotted for comparison.
e ip

Using this E(ni, T ) as a source term, the net radiative loss from any
e

plasma density profile [nI(rf,t) and T1 (t) generated by the core-corona

model can be developed once the proper opacity corrections are calculated

in a local approximation. At selected locations ri within the density

profile < (n(rl) TI), e>(nI(ri) TI), C (nI(ri), T1 ) and F (nI(r i ) TI )

(Bremsstrahlung) are calculated and subjected to an additional attenuation

based on the probability of escape (P e) from the specified location ri.

The Pe depends upon the optical depth T i and an accurate approximation"

to this escape probability is to compute optical depths along each of two

paths, inclined to the radius vector along a chord representing the mean

angle of emission for a cylindrically symmetric radiator, and average the

P over the two path lengths. This implies that an effective optical depth--e

can be assigned to ri once the line integral

fa 
n 00

Ti n n(r

is computed over the short(S) and long(L) path to the plasma surface. Each

point ri is thus assigned two optical depths for each spectral category,

and T with these optical depths computed from tiS, Li'so TLSiL'

The appropriate scattering cross-sections for a 0.5 keV "L-shell" line,

a 1.5 keV "K-shell" line, Al photo-ionization/recombination, and> FB(r)adTF

Bremsstrahlung provide T<,L(ri), TSL(r ),?,SL(ri) and T L(ri) respectively

once L, and Ii,L are known.

The final radiative loss from each point in the density profile can be

written

10
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P rid (erg/cm 3 sac) as a function of T. (eV)

1020 ([from a 0.05 cm radius cylindrical Al plasma with n, I 1.01019 cmn3 1

Prad from an equivalent black body

1019
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-F¥ - FF
F 1e T .1pe B FB)

CT (nI(ri),T$ )- ( S + a + C + 21 P es) +

(3)

4> . I(Pe(T>) + Pe(TL)) + (PeTs) +

and this function is radially integrated to produce the radiant energy loss

at each time step. As a spectral diagnostic, the radially integrated power

loss for lines (P<, ?) and continuum (PFF + PFB) is reported separately

and time integrated as well to provide accumulated yields in the three

categories "L-shell" (hV < 1 kev), "K-shell" (hv > 1 keV) and all continuum

(Fl + FB).

Within this local approximation the model plasma is represented

(radiatively) as a superposition of uncoupled CRE line sources attenuated

by the local probability of escape appropriate to each spectral category.

This Pe(ri) is calculated self-consistently with respect to the density and

temperature profile generated by the MHD plasma evolution, and the individual

line source strength c(nI, T1) is assigned self-consistently with respect to

this evolution. In this context the local radiation approximation is in

keeping with the strongly coupled fluid limit used within the core-corona

model (at the outset of this research) to simplify the MHD plasma evolution.

In a local-radiation limit one has the assumption that the radiative diffusion

of energy is so rapid that all the superposed CRE sources are in equilibrium

with each other so that there is no need to couple them and iterate in order

to establish the excited state populations (note that ni(rt) must be a

conserved quantity in that iteration). In fact, for optically thick, highly

collisional systems it is this very rapid radiative diffusion which helps

support the isothermal plasma temperature profile. In short, the thicker

the plasma the more appropriate this local radiation limit becomes, end the

method can be extended to an arbitrary number of spectral categories.

A similar development has been carried through for Ar and the SPLAT

code is now equipped with a radiation package which models either Al or

Ar depending on the input choices. The equivalent CRE source profile

for Ar is shown in Figure 2.

12
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A second area of improvement is in the thermalization of the kinetic

energy in the flow field (Inlm1 Vr) during the collection process.5 The

present technique involves an explicit calculation of the energy residing

in this flow at each time step during collection and, when the flow

energy at the new time step is less than that at the old, the energy dif-

ference is thermalized either by setting a heating rate AE/At or by

instantaneously boosting the core internal energy by AE. In addition,

energy deficits at the end of the collection process are thermalized over

a time scale At - (a-rm)/(c1 -A) characteristic of a shock transit. This

models the final momentum propagation to the outer regions of the plasma,

as required to bring the velocity profile into a centrally stagnant form

when the deceleration of the annulus proceeds from the center outward.

A final improvement is the installation of an internal energy

conserving average for Te and Ti in the core when the energy exchange

time T is very short and one seeks to stabilize temperature oscilla-

tions. The quantity u = Ti + Z(T )T is now kept fixed whenever rapid
Se e

exchange oscillations imply the need to average Te and T The (usually

slow but sometimes significant) electron-ion heat exchanges are now also

included in the coronal temperature calculation (7T.

B. The Standard Yield Experiment

In order to mimic a real experiment with our present core-corona

model several constraints must be kept in mind. First, there is every

reason to believe that present experiments are most surely not cylindrical

in their implosion. The wire/puff gas plasmas tend to close on the axis

like a zipper due to inhomogeneities in the electromagnetic fields within

the diode cavity. Since no axial variations are followed in the present

code, one finds that accurate models of machine driving pulses provide an

excess of energy to the I-D system and assemble it violently on axis.

Under some conditions this results in many bounces of the model plasma,

which are unrealistic and the yield figure extracted from the model must

take this into account. Second, the present model does not treat the

late time behavior of the discharge when "sausage" and "kink" instabilities

14



are often apparently present. Since the sausage mode, in particular,

probably has a significant impact on the (time dependent) discharge

impedance and thus on its radial confinement and compression, the yield

figure extracted from the present code must avoid the post-implosion

phase. Third, the present model does not attempt to treat the "crowbar"

effect active in many existing diodes, which keeps the current peaked

at a large value while the trapped magnetic energy decays. In a device

that does not short out, one expects the current to decay smoothly as the

machine's driving voltage decays and this behavior is indeed obtained

from our circuit equation. The weakening of the current allows the

present model plasma to expand more easily than one might expect in the

real experiment and again renders the yield figure developed over the

later phases of the implosion inapplicable to existing experiments.

A simple yield observation can be defined that avoids these caveats

if one simply presumes that some time window dependent on the bulk plasm

motion can be extracted experimentally. For purposes of a general comparison

let YEbe defined as that yield (in any spectral category) developed through

a single compression and subsequent expansion of the load, i.e.

Y~ M df dt 1Prad (t) (5)

with t E the (expansion) time when the radially outward flow velocity first

falls to zero after the initial compression. This choice of a yield measure-

ment removes all late time behavior and represents a realizable measurement

once the experimental radiative output is correlated in time with some

measure of the plasma flow velocity. The present model can thus be used to

study Y.>9Y< FF as functions of some 20 independent model input
parameters.

Our recent work focuses on only two of these input parameters, but ones

which are clearly related to easily adjusted experimental initial conditions.

These are the total mass of the load" (M)and the location of the density smi-

OHM Cr 0), upon transition to a plasma state, and are easily varied as parameters
Is

of the initially self-similar plasma model. These are experimentally equiva-

lent to the number of wires (of fixed diameter) in a load array and the initial

radial location of the load array. In order to complete the specification of

these studies, a list of the other relevant input parameter ranges is shown

in Table I.
15



Table I. Fixed Initial Parameters

Diode Inductance, LD 13.5 nh

Generat or Impedance, Z 0.5 Q

m aximumV o(tW 1.5 * 4.5 MV

, max150 ns
Time to reach V

Initial current penetration parameter* S -20 5

g = (ri/a)2 / 1-(ri/a)
2

Initial plasma temperature 15 eV

Initial annulus width " 0.14 cm

Return current radius 6 cm

*this adjusts the time-average core/corona current partition

0(t), with larger g values producing smaller S values.

In modeling experiments which vary the r° and Mp arameters, the total

number of ions should correspond to the mass of a typical load, and masses

correspondina to [6 - 24] 1.5 mil Al wires 3 cm in length were used. This

provides a (1.125 - 4.50) x 1019 range in the total ion number for the

load or equivalently a load mass range of [168 - 673 ug / cm]. The initial

profiles containing a fixed number of ions are chosed so as to (i) con-

fine the ions within a 0.2 cm (or less) thick annulus, (ii) provide for

surface velocities on the order of the sound speed at Ti,e(to) -15 eV,

and (iii) assign surface accelerations which are compatible with the

pressure gradients and initial J x Be stress profiles. Second, the peak

density of the profile is chosen to correspond with the initial load

radius and has been varied over [0.3 - 2.0] (cm), covering popular

experimental choices.

A third important parameter in the profile is rI(< a), the effective

skin depth of the plasma. This choice cannot be set easily by experiment

but it is a very important parameter in the yield studies. A range in

(r /a) 2
I of [5.0 - 20] has been examined in recent work. The wide

lg(r a) 2

domain for g is necessary because so little is known as to its proper value.

16
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In sumary the available radius and wire/mass combinations are

denoted in later figures by

wires (M)

r Cm 6 8 12 16 24m

2.05 A6 A8 A12 A16 A24

1.58 B6 B8 B12 B16 B24

0.97 C6 C8 C12 C16 C24

0.68 D6 D8 D12 D16 D24

0.30 E6 E8 E12 E16 E24

with V and g continuously variable.P

C. Dynamics of Typical Implosions

As a general rule the core/corona implosion falls into one of

three distinct trajectory types. These are illustrated below in Figures

3, 4, 5 for the case codes and legends shown. The demarcations between

the SC/PC/BC trajectories in the experimental domain Ir, H0 , Vp, g) are

rather complex as the radius decreases and not yet mapped out. For the

larger radii, however, the transition through PC to rather clear BC

trajectories is progressive as the load mass is decreased.

The general importance of the corona is also a strong function of

radius rm and g. The smaller values of r tend to produce significantm m

current transport in the corona at peak compression for moderate g values.
0The larger values of r° tend to allow most of the current to flow in them

core most of the time unless the g values are very large (40 - 80).

Clearly the details of this dependence are of interest in load design but
0more initial condition points in rm must be developed for such a study.

The physical origin of the effect is rooted primarily in two things.

First, small r loads tend to compress more and thus drive g up as them

heating due to assembly occurs. Second, the hot dense core tends to

release energy into the corona when its surface density gradients are so

stiffened. These effects in concert produce a drop in B I Icore/Itotal*

17
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At large r° values the assembly heating generally prevents stiff gradientsm
by holding off the compression. These gradients are available later when

the core plasma has been cooled radiatively but then the core has little

energy to release into the corona. Hence these effects when separated

produce little decay in S.

The radiation pulse-width in these implosions can be seen to vary

over a fairly wide range 5-30 nsec. The shorter pulses generally are

obtained from cooler, continuum emitting plasmas while some of the larger

pulses obtain when the timing of assembly heating, compression and peak

current all conspire to produce a hot plasma [600 eV - 1500 eV] that is

momentarily confined or quickly recompressed (in a PC sense) by large

currents confined at small radius. For the standard voltage rise time

mentioned above, only the lower values of r° (< 1.0) can give rise to this
m

sort of pulse because the load must be able to drift into a nearly assembled

state just before the peak voltage and current rise to heat and trap it.

* D. Standard Yield Experiment Parameter Studies

Perhaps the easiest variation to examine is the dependence of

yield, YE in various spectral categories, on the generator peak voltage.

In Figure 6, this quantity is plotted for values of V < 3.0 MV using
p -

initial case C12 with an assumed g - 9.0 for each of three spectral
caegris:.total < >categories: Y YtEoa YE Also shown are the peak temperatures

achieved, Ti and the peak compression, nil over the time frame of the

implosion. The generator voltage must be sufficiently large to "ignite"

the load, but once this threshold is achieved further voltage increases

do not improve the yield significantly. This results from a very much

weaker compression for higher voltages (which give higher implosion speeds)

as evidenced by a smooth increase in peak temperature and drop in peak

density.

A second fundamental variation is that of dependence on the array radius
0

rm. In Figure 7, the sequence of initial cases E12, D12, C12, B12, A12
a _total < >
has been used to produce the same information as above: YE  1 Y E Y V

Tini, at a fixed voltage V0  1.5 MV and g = 9.0. Here there is a clear
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optimum in ro because of a combination of kinematic and dynamic effects.
m

At large ro even though $ rises rapidly to near 0.97 from a small initial

value, the load has too large a distance to cover in the fixed rise and

fall time of the driving voltage. This produces the larger currents while

the conductor is at larger radius and hence does not give the larger values
of J x B that can be obtained with smaller r 0 . Bringing r 0 down thus

B m m
gives a "kinematic" optimization and improves the yield, peak temperature

and compression. On the other hand if r0 is too small the load experiences
m

strong inward forces but does not have enough distance of travel to allow

these forces to deliver much kinetic energy. This is a dynamic degrada-

tion of the implosion quality, caused by being too close to the bottom of

the effective potential well created by the generator.

Finally the variation with load mass is shown in Figure 8, generated

by initial cases C6, C8, C12, C16, C24 at fixed voltage V and g = 9.0. Also for

comparison this mass variation is shown in Figure 9 with r I fixed rather than

g. In this later sequence g will change slightly at t because the profiles

which evelopea smaller mass do not spread as far from the peak rm as those

of larger mass. Physically the sequence with fixed g correpsonds to early

histories which imbed the current in a fixed fraction of the load volume, nile

the sequence with fixed r I corresponds to early historic. that prcelice thinner

skin depths on smaller masses due to a more rapid heati which freezes the

jcurrent diffusion before it has a chance to penetrate. Dynamically the yield

will degrade for both large and small masses. Large masses cannot be accel-

rated well and thus build no kinetic energy Leservoir with which to drive the

radiation. Small masses heat too rapidly and hold off the compression of the

load, degrading the yield because too low a density is achieved.

Finally, in Figure 10, the variation of the yield with g is shown in order

to illustrate the general sensitivty of the implosion quality to the detailed

microscopic assumptions underlying the calculation of the load dynamics.

Larger g values produce more rapid compressions and higher peak temperatures

because they create higher surface stresses; roughly similar total currents

are confined to a narrower annulus, increasing Jz x B. For very large g

values, of course, the core current will decay ( 0 * 0) because infinite

current densities are not allowed due to coronal growth.
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E. Testing the Yield Dependence on a Possible Scaling Parameter

Recent Maxwell Laboratory experiments6 have examined the utility
0 Mof the parameter K1 = rM as a measure of implosion performance. It hasm 0

been shown to be a poor indicator of implosion quality with yields decay-

ing rapidly and peak temperatures increasing as one progresses to larger
0values of r at constant K The load masses in the Maxwell experiments

are smaller than those used in the studies described above, but SPLAT

calculations (at the larger masses used before) indicate that K1 fails

as a measure of implosion performance for the model plasma also.

Using the standard generator impedance and inductance from Table 1

and adjusting the driving voltage waveform model for a 80 - 150 nsec

rise time to a peak voltage of 1.5 - 3.0 MV, a sequence of SPLAT calcula-

tions at variable r 0 with fixed K - 17.8 [cm.ug]h shows a trend similarm 1to the experimental behavior. In Figure 11 these results are shown as a

function of array radius. The yield falls because of a systematic trend

toward overheating at large radii, if sufficient mass is removed to hold

K constant. The greater temperatures reverse the implosion too soon and

prevent compression to densities sufficient for appreciable radiative yield.

According to the SPLAT code dynamics, the proper contour of constant yield

would involve a slower power of mass, K.- ro MY, with y < in order to

prevent the overheating.

This failure of K to represent a figure of merit corresponding toyT y>7
yield Yor is due probably to the origin in an optimization based on

constant levels of power coupling from the generator to the load. Since

the input power levels are only weakly related to the time integrated

radiative loss, or yield, this parameter is suspect at the outset.
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CHAPTER III. ELECTRODYNAMIC MODELS OF ANULAR PLASMA LOADED
DIODES BASED ON A GENERALIZED HERTZ VECTOR POTENTIAL

A. Introduction

The common use of a circuit equation (usually derived from Faraday's

law) in MHD models of imploding annular plasma loads is grounded in very

serious simplifications of the actual electrodynamics in pulse driven

diodes. The most important simplifications involve the use of an essen-

tially electrostatic approximation for the electric field, the use of

magnetic field diffusion theory in the presence of an inhomogeneous, time

varying, convecting conductor (the plasma load), and the neglect of the

tensor character of the collisional plasma conductivity due to the imbedded

azimuthal magnetic field. Moreover, the geometry of actual machines is

complex enough to preclude detailed electromagnetic theoretical analysis

in anything less than three spatial dimensions.

Many difficulties can be removed from the conventional theoretical

treatments by simply insisting on a more rational diode geometry. 8A

simpler, more z-symmetric diode feed would obviously simplify analysis

and prediction of the experimental results. Significantly, the choice of

new diode geometries may be guided by theoretical analysis using a generali-

zation of the Hertz potentials 9 0which are intrinsically suited to the

*problem of fluid conducting plasma in a wave-guide. The choice of boundary

conditions can select particularly simple electromagnetic field solutions

-tand load configurations that admit a relatively tractable analysis over

a rather general class of waveguide geometries and electrodynamic load

properties.

* The new field equations for the generalized Hertz potentials are

equivalent to the Maxwell equations which give rise to them, but they are

*simpler in that a single vector field is derived that represents E and B.

The solution of a single wave equation (or wave-diffusion equation) is

then sufficient to provide all the electromagnetic field components. This

new vector field Z(x,t) is equivalent to the usual Hertz vector potential -

only in source free regions and therefore represents a non-trivial generali-

zation of the original field. The choice of Z(x,t) is in fact the

generalization of the familiar process of making a convenient gauge choice,
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allowed by the arbitrary lamellar component of the ordinary vector poten-

tial A. Here Z will be chosen so as to remove the need for two inhomo-

geneous Maxwell equations, and to replace them with a single equation to

determine Z.

B. The fundamentals Revisited

Such a program of reduction can always be carried out when the

field sources are prescribed functions, i.e., p - P(x,t), J = J(x,t) are

given and the fields external to these sources are required. In this

case one must seek a vector potential Z(x,t) which

(i) allows the definition 0(x,t) - - V - Z (x,t) to represent

a gauge choice relating 0, A (x, t) (the usual vector

potential) and,

(ii) reduces the number of inhomogeneous field equations from

two (for 0 and A separately) to one for the new

potential Z.

Performing the usual elimination of the homogeneous Maxwell equations by

introducing 0 and A, the two remaining relations become

" + c- 1 at A)- 4w p (4a)

-  (V + c - a t A) = +4r c - I J . (4b)

Now choose the generalized Hertz vector Z so that

A != c- l 3t Z (5)

d

and if 7 - Z then a familiar gauge choice (V.A + c- I  0) is implied.

If one now replaces and A in (4a, b) with the equivalent Z terms, the

equations become
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20(Vz) 4 w p

(6a)
at 02 Z 4 - w J.

-- - (6b)

The procedure for choosing Z is formalized in Appendix A, which points

out the role of a Hertz vector potential in the conventional electro-

dynamics.

Let the source field J be represented by the time derivative of the

charge transferred per unit area in any spatial direction over the entire

time domain of interest, viz.

Sat :E (x, t) , or
(7)

T f t  J(x,t )+ (x)

Using the continuity relation, it is easily shown that T (x, t) reduces the

problem to a single wave equation

2

n Z 4 w T, (8)

because (6a) is subsumed in the divergence of (8) so long as TO(x) is a

solenoidal field. In terms of the potential Z and transfer vector T, the

observable fields are written

E I - V X Z (x, t) -4w T (9)

B -C xat. Z(x.t) (9b)

and the uniqueness of Z (x, t) is guaranteed because the specification of
por J, i.e. T (x, t), and the initial fields E (x, t ), B (x, t ) at some time

to, can be seen to imply Cauchy open-surface boundary conditions for the wave

equation (8). The uniqueness of Z is also discussed in Appendix A.
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In a waveguide formed by two infinite plane parallel perfectly conducting

surfaces, the Hertz vector Z represents a variety of electromagnetic wave

solutions. However, given the azimuthal symmetry and perfectly conducting

guide surfaces, only a particular subset are of interest in analyzing and

describing the evolution of an annular plasma load. One seeks radially

varying TEN modes which limit asymptotically as r-O. to a superposition of

incoming and outgoing cylindrical waves with (perhaps) a quasi-static component

added. At large radius, the vacuum/waveguide boundary conditions therefore

restrict consideration to those solutions
Z- W ICt (r, t) + C (Z, t) I  (10)

where t, I denote the solenoidal and lamellar portions of the Hertz vector.

The radial component of Z must vanish because if one insists that the scalar

potential (- V- Z) exhibit no radial gradients (in consonance with the boundary

conditions), then the E arising from the solenoidal portion of Z can vanish if

and only if Z itself is everywhere zero.r

The delicate question is how to preserve this solution as it colides with

and is reflected by a convecting quasineutral (p so 0) plasma load which exhibits

strong conductivity gradients. The plasma must possess and self-consistently

retain several symmetries in order to insure retention of Z in the form given

above. The central requirement is that E be orthogonal to Yd. Since E arises

from the independent fields 0 and A, it is sufficient to require that 0 have

no radial gradients and that

vxV = 0, (lla)

V x V a 0, (lib)

a V'V x V x A - 0, (lic)

where one has in the rest frame of the convecting plasma (superscript ')

4: -a (x, t Y (V (K, t 0-cl atA+ x xA

orthogonal to the gradients of -(x,t) E a(x,t) y(V(x,t)) and to the

convection field V(x,t).
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The next step is to try to carry out the program used above when p

and J were given functions. In this case the choice of Z(x,t) is not so

transparent; one must construct the proper functional A(Z) which provides

the results (i) 4 = - V.Z, and (ii) only one (in this case homogeneous)

propagation equation is non-trivial. Such a construction can be done using

the Green's function solution of

V2 G(x,x) =-47r6(x-x)

which provides the proper boundary conditions in the waveguide. For the

plane parallel perfect conductors and the axially independent cylindrical

wave solution at large radius, this requires G(x,x) = G(r,r, O-W), a

single line source located at (r,W); but the method outlined in Appendix B

is applicable in any geometry.

The solution algorithm for A(Z) and Z (as discussed in Appendix B),

uses the mathematics of space-ordered exponential operators, and appears to

provide a relatively straightforward computational means of solving the

otherwise-intractable problem of fields in the presence of a convecting

inhomogeneous plasma load with time-varying conductivity. As long as the

diode surfaces are approximated as perfectly conducting, the solution demands

(TEM) modes governed by a single transverse component of the vector Z, i.e.

C 0 everywhere. When the perfectly conducting waveguide and the plasma

are configured such that (a) radial plasma convection currents are divergence-

less (i.e., plasma waves in the ambipolar space charge can be neglected),

(b) the plasma gradients are radial, and (c) the plasma is axially uniform,

then all axial load currents and radial guide surface currents are given in

terms of E and B fields derived from the transverse axial component of the
A

generalized Hertz vector, Z = (r,t).

The next step in a complete plasma/diode model is the constituitive

relation I - aEi The Braginskii transport coefficients express currents in

the plasma load in terms of the fields, and the result can be interpreted as

W " -



requiring (a) radial force balance on an "average electron" which responds

to the space-charge field E created by pressure gradients and axialr

current, and (b) constant axial electron drift speed on the electron-

inertia timescale, i.e., adiabatic axial electron currents, changing on

the slower timescale of the fields. Assuming that the axial drift speed

(J z/ne) and the radial stress quickly relax to quasi-equilibrium on time-

scales fast compared with those for rield changes, one can make a fully

self-consistent treatment of the evolution of the radial fluid velocity

Vr (r,t), axial current density Jz (r,t) and the incident electromagnetic

field Z(r,t) simultaneously. The details are discussed in Appendix C.

The theory developed above is an adequate basis for the proper calcula-

tion of the field/plasma momentum exchange in any radial implosion whenever

the conductivity relation is scalar and linear. In the classical, weakly

coupled plasma of course this relation is not strictly scalar, but to a good

approximation the tensor character of the Ohms law can be superimposed on

the electromagnetic field picture developed above as a quasi-static pertur-

bation. The new field component which must arise (within the plasma load)

is an ambipolar radial E field due to radial pressure gradients, Hall effects,

and thermo-electric effects. In the present case this radial field will be

independent of axial coordinate and will vanish in the vacuum region of the

waveguide because it is essentially the field of a radially varying axially

uniform line image charge QI(r) with QI(r) - 0 as o(r,t) - 0 in r. Using
the radial stresses developed from both pE r[mbipolar and aEz x Be one can

therefore define a completely self-consistent momentum transfer between the

far waveguide electromagnetic field and the annular plasma load. The result

will be a more definitive picture of the load dynamics than has been possible

heretofore in the classical weak coupled plasma limit. This detailed

model will be developed further in Section E, but a simple illustration

of the physical content of this vector Z(r,t) will serve to motivate that

analysis.

C. Simple Solutions in the Steady State Plane Parallel Waveguide

In the case of steady fields thr solution for Z(r,t) assumes a

* I quite symmetric form which can be seen to be a firm time asymptotic limit

of the solutions to the complete wave equation B8. Consider a constant
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conductivity (a ), immovable (V r 0), plug (r < r p) in the plane parallel

waveguide and transform B8 using the dimensionless variables

x - r/r 0

T - ct/r °  (12)

E - r o0 0/C ,

0

based on an arbitrary scale radius ro, which can be conveniently set as

r . The integrations over the conducting region produce two wave equationsp

with continuous sources on the domains

x> 1: X 1  ;2 0azazu inx ~Exzl and

(13)

x < 1: x a x a z Z 47 a Z(x,T)] - (- -I

The steady E , B0 fields available to this system are described by Z

fields which arise as solutions to the homogeneous wave equation. The

usual vector potential Az (x,T), cf B9b, exhibits a clear decomposition

into E terms and Be terms, which eliminates the scalar potential entirely

as previously anticipated. In particular one has

Z(x,T) Qo + , with

(x>1) A>(XT) =r- Q (T+ 2n Z Xn x)
z 00

r 21(r)
B>(X,T) 27T E Q /r 2x pcr (14)

(x<1) A: (X,T) r-l Q (T + wZ (x
2 - 1))

o 0 0

< 2 ] 21(r<r p

B (x, ) - 2 o Qo/r x
S36 cr
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and E = - Qo/r2 everywhere. The fields here corresponding to those of

a leaky capacitor with a constant voltage source at x - maintaining a

steady voltage.

The potential clearly decomposes into a space-like component, x2,

2and a time-like component, T . The space-like function represents the

charge contained at any time within the radius x on the waveguide plane,

while the time-like function represents the cumulative charge involved

in the continuous superposition of incoming and outgoing TEM waves which

add up to the steady, uniform vector field E . The ordinary vectorz

potential A also exhibits this type of decomposition, with a continuousz

value and spatial derivative at the conducting interface x - 1. In con-

trast to a more conventional formulation of the same problem using distinct

scalar and vector potentials, the present method makes a smooth transition

to the time dependent problem posed by time variations in either E or
0

El .x t " In these situations the source terms are forced to be non-zero

because a (E Z) cannot remain spatially independent and accommodate the
.T 0

boundary conditions. Outside r (x > 1), the time dependent value ofp
Eo(x x ZIx l=1 spawns outward running waves which communicate changes in

0

the conductor to the charge distributions on the guide planes. Inside

the value of E Z at the interface (xp=l) acts as a source of damped waves

which continue to penetrate the conductor by propagation and diffusion

until a uniform E (free wave) solution is again established at some newZ

boundary value Ez I x , Treating the same or a similar problem using a

separate set of A, 4 this simple process of charging the capacitor or

changing the conductivity requires some connection between the two poten-

tial functions in order that Be, Ez become properly interdependent. Such

a connection, or the complete elimination of 0, is not always transparent

and the present Hertz vector formalism achieves this elimination quite

easily.

It might appear a viable conjecture that such symmetry breaking as

seen in the time dependent "leaky capacitor" problem, the destruction of

the space-like plus time-like Hertz potential solutions, is a fundamental

property of the theory. This is in fact the case, as discussed in the

following section.
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D. Explicit Source Transformation of the Wave Equation and the
Separation of Time Scales

The homogeneous relation (B8) which specifies the evolution of

Z(r,t) can be simplified considerably at the expense of introducing a

manifestly physical but somewhat complicated source term involving the

current density profile of the plasma. Again, setting the equation in

dimensionless variables and choosing an (arbitrary) dimensionless scale

radius xN in the static Greens function (a radius sufficient to contain

the bulk of the load mass, for example), the terms of B8 which contain

all of the source information exhibit the following identity

1Z + Jd- Z-21 Z -dir -Z a nj) Z - n(i) J diE (aj)(a az)
x X 0

O= -di- ti ( 3r) (,T) C 0 (-,T) ,(15)

0

where = - x x3 Z and x> is the greater of x, x. When this result

is combined with the C'Vr(7,T) (=Br ) convectic' terms a simple, very

physical statement obtains

00
32Z _ X-1i x )=4DT d E9nx>1(3T)A(,T](6

T x- 4'N- n
0

wher e= -o _ Zrn (Z >) 41 4on is the (dimensionless)

representation of the field E' in the convecting frame Br. The generaliza-z

tion to all orders in Br is quite straightforward (and generates the space

ordered exponential series discussed in Appendix B), but it is not

.equired when the convection speed implies 8r << 1, as is usually the case

in experimental situations of interest. This new relationship displays

quite vividly the conjecture of the previous section. The source term is

always zero in any situation where J ! - E is time independent (for any

spatial configuration of the conductivity E) and thus only temporal varia-

tions in J can force solutions for Z(X,T) which depart from the simple
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form seen in the previous section after a light transit time across the

radial domain of interest.

A second result of (16) above is that a clear separation of the time

scales occurs. The free wave solution, being characterized by the light

transit time across the system, will respond to the much slower time

variations of the source term by simply propagating variations in to and

over the system. In any numerical scheme designed to solve (16) it is

therefore essential to find some means to calculate this propagation over

large intervals in T, and allow a concentration of the numerical effort

on tracking the temporal variations of the source. In Appendix D an

explicit forward quadrature for the free wave propagation is developed

which removes this problem. The method is related to the Poisson integral

representation of two dimensional wave solutions, but it is developed

directly from the free wave Greens function in two spatial dimensions.

The result of each forward quadrature is the specification of Z(x T i+)

and aT Z (x T i+) on a specified (easily rezonable) mesh; and these

values are, of course, sufficient to specify all the sources required to

compute the next forward step once the temporal and spatial variation of

B ,r is known. In the fully self-consistent formulation the evolution of

r E is provided by a similar forward advance of hydrodynamic plasma

variables, but the method developed in Appendix D allows any source of

these fields. The development of the Hertz vector sources, on the right

of (16) above, can be cast in a relatively compact set of operations which

proceed from izj, a i and use the wave equation itself to eliminate
T e A A

higher order time derivations of Z when they appear in a1 '2 LO, etc.

E. The l-D Electromagnetohydrodynamic Model for the Plane Parallel
Waveguide

In the numerical method a more natural variable is a - x2 since

this removes some coefficients in the differential operators which are

singular at x - 0. The variables a and x are used interchangeably in

the following discussion; and Q is a reference charge value which allows

Z to be dimensionless as well. Any forward advance of the system must
begin with a specification of Z Z(x T and i a Z(x T together

with the plasma state variables
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nI(xTi)' (x T)' EI(X Ti), T(xjTi) 8r (xi ,

the ion density, ionization state, chemical potential, electron and ion

temperature, and radial convection field.

These fluid variables and their gradients provide the values of
iT9 A. required to calculate a T and its higher time derivatives; the

Hertz field variables Z. and z. provide the required input to compute
A = J

e! and its higher time derivatives. For example, the systematic

specification of the time derivatives of requires

=- 4 (Daaa aZ)j, or Ez  -Qoro 2  in lab coordinates,

a.a a J 0 
JA a.

i~'= _- (a~) 2a i 8 ( 2 a~ iz j  i~j2a

~~ - I -dLC A

B 2a [(aai')j a- j fdal?alT] (17)

4( a ' aa a Z)a aa iZ) - * 82a

a

and these in turn specify, when 3 S is included, the complete source
term for the next time advance of Z, viz.

Jd .4 i JaL-e
o0
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From these same fields the fluid stress, which provides J. can be cal-

culated from the formulation in Appendix C and the implied j x B force

density -

q r 0C EeB]aT

The external voltage source can be modeled by enforcing a boundary

value for 6at some large radius (as a function of time) and the current
A

drawn by the model plasma is simply the spatial integral of 1 e ver the

domain. Drift speed limits on current conduction can be imposed quasi-

statically at every time step in much the same manner as one develops

the Braginskii conductivity in Appendix C. As the plasma density falls,

with' given, there will always exist some radius for which the drift

speed u will be forced to exceed the sound speed ca, and this will
(A 

S

define implicitly a (nonlinear) conductivity () which satisfies the

constraint io ( ) '- 9- eIncs' In practice this limitation may drift

in or out in x as the 6profile develops and it will generalize the

present SPLAT coronal region in a quite physical manner.

The calculation of the usual classical heat sources and the radiative

losses can be folded into the model as further fluid source terms in any

of a variety of well known methods based on previous work.
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CHAPTER IV. IMPLICATIONS OF DISCHARGE BEADING WITH
LOW-DENSITY INTERCONNECTION REGIONS

A. Introduction

The late-time, fully-developed stage of sausage-like "beading" of

z-pinch discharges can give rise to enhanced electron heating (and thus

enhanced radiative losses), caused by Ohmic anomalous heating in the

constricted regions. In this chapter this transfer of energy from conden-

sations of magnetic field energy to radiation is examined quantitatively,

based on assumptions about the nonlinear state of the instability.

Constricted portions of the discharge, with low density and cross-

section, and mostly or entirely "anomalous" current, alternate with the

higher density "beads", which carry current classically. The extreme

limit of this phenomenon is that of multiple diodes in series, with the

nearly-evacuated low density regions considered as bipolar-flow diodes,

with pinched electron flow, as suggested by Goldstein1 1 In all.

probability, the low-density regions cannot evacuate to the extent required

for such vacuum-diode behavior.

The overall resistive heating rate is of course VI, with the total

current I given by appropriate circuit equations, but the local heating

rates for electrons in the low density regions are balanced by increased

radiative loss when these hotter electrons collide with the denser blobs

of plasma. The blobs cannot respond hydrodynamically to the increased

heating before radiation loses the deposited energy.
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B. Current

We first examine the conditions under which all the current in the

low-density regions would be drift-speed limited, i.e., (approximately)

when the classical drift speed vd = oE/n e would exceed the sound speed
d e

C cs . From = W2/47v eL and
?p

V(sec1 )0.91 X loll 2 1 n/ N T-3/2 (1.8)ei Or4 AO)klOY keV

we get

V(cm/9) = 1.8 x 101 ( - ( T 3/ 2 E(MV/cm) (19)d \InA/z / n, keV

where z is the degree of ionization (ne = zn i), o1 is the axial conduc-

tivity, (across magnetic field lines) and tnA is the plasma parameter.

The classical drift speed rises rapidly with T as the plasma becomes lesse

collisional.

This is to be compared with

(2 z )sh 20cs  2.24 x 10726 T (20)

For 10-times ionized aluminum (A - 26, z - 10), one sees that with

electrons at keV temperatures the classical drift speed greatly exceeds

the sound speed for MV/cm fields unless ni is of order 1021 cm- 3 or

greater. Elsewhere we argue that the actual drift speed cannot much

exceed the sound speed, so that the current is drift-speed limited to a

value approximately

26A) (z ) (/2ni Tke aIa(H) - 0.36 ) /2 Te a-T G (21)

in the anomalous ("a") low-density regions of cross-sectional area r2.

Since the current density is divergenceless, this must be the current

in the circuit.
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C. Voltage Drop in Low Density Regions

We now envision a number N of such millimeter size low-density

"anomalous" regions of length 1a alternating with denser "classical"

regions ("beads") of length Ic. Each "classical" region has, in general,

a core which carries no current because it has not been penetrated by the

magnetic field (and hence has no inductive E), a classical skin current

layer, and an "anomalous" (drift-speed limited) outer corona. The

electrical load is thus envisioned as a transmission line consisting of

N elements in series, with each element as in Figure 12. Since the total

current is divergenceless, it is given by Eq.(21), and depends on the

applied voltage only through the temperature. If the corona carries only

a small fraction (1-8<<l) of the current, the DC voltage drop along each

classical bead is R I where R is the classical resistance of the bead,

Rc

c
c 7r(rz - r2)o

c i

i.e. R (Q)- 3.5 10-4 z 1 7(rZ - rz)(-n') ke3 (22)

with r c the bead radius and ri(< rc ) the current penetration radius.

One can see that when inductive (Li and LI) effects are small (i.e.,

if L_- 0 when I peaks or dips), the classical resistance of a few tens of

1 mm beads at roughly 1 key is quite small if the current penetrates the

beads, and almost all the voltage drop occurs in the anomalous regions.

On the other hand, ri/rc tends to be frozen in at early times by the

formation of the high conductivity, and tends to have values of order il0

or less, so the resistance is larger than the current-penetrated value by

an order of magnitude or more. Still, this gives only a small resistance

for the "classical" portioq of the circuit and most of the DC voltage drop

would occur in the anomalous regions.
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i/N

Fig. 12. Geometry and circuit model for one element of a beaded

I discharge. Rectangular boxes signify current limiters,
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D. Joule Heating

Setting aside for now the question of inductive corrections, this

allows us to estimate the Joule heating rate in the anomalous regions in

the DC case:

VI Nc c R2
E =N N I (23)

aa aa

where the last term is neglected and where I is given by Eq. (4). If all

this energy went into electron temperature and none escaped to ions or

photons, it would correspond to a rise

2 VI 1

a a a i

i.e., T(keV/ns) s 15 V(MV) ( c m ) ](L 26 T (25)
[Ntl 'a A 10/ keV

a number of order 15 keV/ns.

The transit time of a typical electron from one bead to the next at

a constant sound speed cs(TkeV) would be

T - £I/C - 4.5 x 10-9 secxiamm) (A L LO T2
as8 am) (26 z ) keV (26)

or a few ns, so that an electron could acquire several tens of keV before

plowing into the adjacent dense bead and losing its energy to dense-

plasma thermal energy and not-so-cold-target bremsstrahlung. In fact, a

certain amount of this energy is lost to ions and radiation during transit

across the anomalous region, and we now give estimates showing that loss to

be dominated by classical heat conduction.
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E. Cooling Rates Offsetting Joule Heating

The classical collisional electron cooling time to ions of atomic

mass A (taken from Book, 1980) is

ke) (27T~ke/ns) - 3. x 12 /Z \ InA (26)(~'iT_~e/s . 1 0 1.~0 k A /~019/ keV (27)

which is negligible at 1 key and above (unless ne > 1021 cm- 3). The

radiative cooling gives approximately

T(keV/ns)--- 4.4 x 10- 2 T
- 1 (yir3)(28)keV 0 T

for aluminum with T > 1 keY (Terry and Guillory, Ref. 1 p. 5 and plasma

radiation transport computations done by Duston (1980)).

The classical heat flux, which is dominated by the Hall flux term

Te since V 1w is small except very near the axis, would give a

cooling rate

i(keV/ns)-- 3.5 x 10 2 r a(]! N3/2 10 "O ( a )m T3/

-2 T r26) 1mmO 3/2,k

(29)

where rT is the radial temperature scaleheight.

But the modified two-stream instability12 ,1 3 grows at a rate about

half the lower-hybrid frequency

lol 126\I A-- (30)( a\

u* ce - ci 3 x i kAii~ 101~~ TkeV (0

(based on Eq. (21) for I) and thus can easily saturate in less than 1 ns,

leading to alteration of the diffusive heat flux as well as being the

source of the drift-speed limiting assumed at the outset.
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But the alteration of the heat flux, according to the form of

anomalous heat conductivity given by Manheimer 
14

SK -cT/16 eB (31)

is small and gives a contribution

i~kV/s)- 10O3 /A) (110)3/2 (lA )[ir r(mm) ) T-3 /2
U261 ni L key

(32)

to the electron cooling in transit across the anomalous low-density regions.

(The inverse dependence on ni comes only from the linear dependence of I,

and thus B, on ni.)

The instability tries to stabilize by bringing a small number of

ions up to the sound speed15 but this is an important energy drain for the

electrons only where Te >> T For the time development of Ti due to this

anomalous heating, one may consult Lampe et al,
16 . A fraction f i -(me/md)k

of the ions is accelerated to a speed comparable with ca, i.e., to energies
33T e  (The directions are isotropized by the magnetic field.) There is

thus a loss of ion thermal energy due to the exit of these particles from

the low density region, which is only partly compensated by the thermal

influx of tons at temperature Ti. The net heat loss flux per cm2 of area is

nifi[( c)(2 Te) - Q vThi)(3 Ti)] (33)

* (vThi is the ion thermal speed); and when the instability is saturated

and quasi-steady this energy loss is made up by energy transfer from

electrons to ions via unstable waves:

n* rr 2 ta Wr: 2(Qnifi)[cT - v~i T]
2 a aa8e
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This gives rise to an electron cooling rate

(keV/ns) < .5x -3e (1) X"(4

relative to the number of electrons. In fact, for nominal parameters

all of the electron cooling rates (27) - (34) are small compared with

the Ohmic heating rate, and so most of the Ohmic energy gain is delivered

to the blobs after transit across the anomalous region.
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F. Power Delivery

Assuming the dense blobs to be thicker than one range for the 15-50

keV electrons accelerated into them, the total net power delivery to

them is

P (Te - Teo) N~rr2 n% c3
2~( eTeo)N a necs (35)

where Te - Teo is the temperature gain by Ohmic heating, less losses,

during transit from blob to blob. If the cooling during transit is

negligible and if almost all the voltage drop occurs across the low-density

regions, then the power delivered is

P(TW) = 0.36 -- \m ) /\3/ N kT (36)

with ni, TkeV representing either their average values or their initial

(unheated) values in the low-density region. If less than the full voltage

drop occurs across the anomalous regions, the value of V above is adjusted

downward accordingly.
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G. Peak Electron Temperature

In the low-density regions, the electron temperature varies

axially, increasing in the direction of electron flow because of

collisional and unstable-wave isotropization of the energy gained

from the axial electric field. The temperature begins at approxi-

mately its value in the adjacent classical bead (a quasi-bala:ice of

deposition and radiative loss), increases as the electron traverses

the low density region, and reaches its maximum just before deposition

in the next "bead" downstream.

Since the heating during transit has the approximate form TT
e e

(from Eq. (25), one has for the case of negligible heat conduction and

radiation

c(t) c5 (0) + Est

(37)
(t) = cs(t)

So that z(t) = ()t + C t
2 and the final temperature is such that

cs(tf) f VC;o + 2 Esia (38)

i.e T()= T + 670ke V) -L (39)
e a eo Na

from Eqs. (20) and (25), as an overestimate of the peak temperature.

(Na, the number of anomalous regions, is observed to be typically

of the order of 20 to 30, while the inductively corrected voltage

V - LI is one or two MV.) The voltage drop along the classical beads

has been neglected compared with that over the anomalous regions

between beads, and including it reduces the effective voltage appearing

*in Eq. (39) to that occurring only over the N anomalous regions. InNa

this approximation the temperature increases linearly with distance

across each acceleration region.
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The indication that the peak electron temperature may be tens

of keV implies that Bremsstrahlung and inner shell x-rays can be produced,

predominantly on the cathode ends of the classical beads if their density

is high enough, or throughout the beads if they are only about one range

thick for the energetic electrons.
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H. Inductive Effects

The generalized Ohm's law in a classical medium takes the form

E - nJ + kJ -- x B (40)
e

or V - RI +Li+LI (41)

(k is a constant related to the electron inertia and the geometry, and

L is the self-inductance.) Voltages induced by changing the current-

carrying radius ra are of order

r
E(MV/cm) -- 21(MA) - (ns1

r a(42)a

which becomes of order 1 MV just before the peak compression. The

corresponding impedance

(Ohms) - -2(cm) ia/ra (ns- 1) (43)

has maximum value on the order of 1 Ohm, in series with 1-4 Ohms effec-

tive resistance, and so is not a negligible correction except for a few-

nanosecond intervals when f t 0. In SPLAT code runs, the L term is
a

even somewhat larger, at its maximum, than the Ohmic resistance of the

classical plasma core. But where the current becomes limited by anomalous

regions in series with classical ones, the effective resistance R* in

the equation

V - R*I + LI + LI (44)

is larger (and voltage-dependent, as V); so the L term no longer

dominates, although it is not strictly negligible except very near peak

compression and for the "pause" phase of "pause-and-collapse" compressions.

For our simple description we neglect the i term, which is acceptable

when V/I is much larger than L, i.e.,
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3/2 is

-A (n-1 <<1. V(MV) ( 1)0)O /1O-1/2 (1 (45)
ra " (cm) 26 ) n ---- keV Tr

The LI term may be governed by nonlinear sausage instability

dynamics not yet well understood; when I is given by Eq.(21), I is

proportional to -4(ni~r2), i.e., the change in particle number in thenube in ah

necked-off region. This subject is to be investigated uner 1981 and

1982 funding, and is beyond the scope of available theory at the time

of this report.

*1
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I. Justification of Drift-Speed-Limited Current

n When the ion and electron temperatures are comparable one does

not get appreciable growth of the ion acoustic instability (Kovrizhnykh,

1967; Biskamp and Chodura, 1971,19), but the modified two-stream insta-
13 20bility (Ott et al; McBride et al, ) grows with linear growth rate

1 1 2 1/2 1
Im W(MTS)-.ca = W .(l +w /W ) ,rA- v'i7 (46)2 IOU m 2 pi I  pe ce2 ce

where wLH is the "lower hybrid" frequency, wpe is the plasma frequency,

and wce is the electron gyrofrequency. This persists as long as the

drift velocity vd exceeds approximately the sound speed, cs, and is

marginally stable when vd cs. The nonlinear saturation time, of-1
order 300 w , is much shorter than the k/c transit time of electronspe a
across the anode-cathode gap, so the waves can grow to saturation within

the diode.

Including the electron magnetization more carefully, one also gets

an "electron cyclotron drift instability" (Forslund, Morse and Nielsen21

with growth rate

vd Te
[ (D).ce V e iT i  Vei (47)

where vd is the electron drift speed, ve is the electron thermal speed,

and Vei the electron collision frequency as before. But for typical

parameter values, vd/ve should be of order VTz so the two linear

growth rates are comparable:

~ 26 I(MA)
I. w 2.6 x 100i (10 A6) r(Mm) (48)r (mm)

as long as this exceeds Vel in Eq. (18).
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The radial gradients in magnetic fields can also give rise to a

"lower-hybrid drift" instability (Krall and Liewer, 12) with linear

growth rate

v 2

i[L dB e (]ce/peIm B(LHD) a B:F ces

Since B is at most 21/cra, this gives

Im w(LHD) 4: 1010o MA r26\/10O 3 T 14'ra12(9

ra(mm) A z) TkeV] h

which is generally less than the MTS and ECD instability growth rates.

Because the modified two-stream instability exponentiates in a

few picoseconds and saturates in several growth times, it is most likely

that the electron drift speed is limited in this way to values near

that which stabilizes the instability, namely the sound speed. This

is the justification for the anomalous drift-speed-limited current-

carrying behavior assumed earlier.
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J. Application to Cylindrical Implosions and the "SPLAT" Code

From Eqs. (19 and (20), we easily derive a fact of some significance.

Before the field has penetrated a cylindrical z-pinch plasma, the radial

profile of the E z electric field of course goes from negligible values at

the current penetration front to values of order V/i at large radii. For

all radii where

E(r) (MV/em) ni(r)N 265 [ /2

1

the current is drift-speed limited. For temperatures of order - keV and
2

above, the critical E(r) value at ra .is much less than V/i % lMV/cm when

ni(r) is smell ccmpared with 1020.

But from the voltaae rise time T ' 1 10- 7 sec, we can estimate av
classical skin depth in the dense (classical) region:

A(cm) - 29 VT (sec) T'- 3 /4key \t0"-0z 10 (51)

and this gives a core current,

a

1  f 2rrOE(a)e - ( a - r ) / Adr, i.e.,

E 0

/T ( \ 1/4 (XnAj 2\ ni~
I (MA) 0.21 Tv Tk ( a(m) 1-, (52)1 -1-7) 16 keV \1 A

When the core carries most of the current (IIl), this gives for the

density at the critical surface of radius a

n _ 4 10 A ( TkV I(MA (53)
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Thus, for a keV aluminum plasma carrying 1 MA current at the skin of a

1 -m2 area, if the on-axis density drops below about 1019 ions/cm 3 any-

where, then the classical "core" tends to disappear there. And since~-3

this value (Eq. 53) of ni tends to be small compared with 1020 cm , most

of the E field is shielded from the classical region, i.e., E(a)<<V/L,

while there is a classical region.

The one-dimensional strongly-coupled plasma implosion code SPLAT

(Terry and Guillory, 1)sets (initially) a radius a beyond which

the current is drift speed limited at the initial temperature. In the

present form of the code, this radius is then followed in a Lagrangian

manneT, moving with the fluid velocity. In fact, however, as the

temperature and current increase, the real "critical surface" at which

conduction becomes anamalous moves inward more rapidly than the particles,

following the variable density contour of Eq. (53). Thus a larger and

increasing fractionof the current, I2/I, is carried "anomalously." This

fraction is thus underestimated by the code. The corona is actually

more important than indicated by the code for another reason: its density

at the true "critical surface" r=a is larger than presently accounted

for and the total ohmic heating should be larger.
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K. Sausage Instability Dynamics

The nonlinear behavior of the axisymmetric sausage instability

has been treated only in a few limiting cases. A nonradiating,

perfectly conducting incompressible MHD model with uniform density

and no heat conduction was treated by Book, Ott and Lampe.
1 7

In both the long wavelength (X >> r) and short wavelength limits,

these assumptions gave tractable equations, which showed a spool-like

development of the plasma shape, with thin rapidly expanding disks

of enlarged radius and broad, slowly constricting regions of reduced

radius. The presence of finite conductivity and axial electric field

certainly modifies the dynamics; and even more so, the inclusion of

finite compressibility, which is being studied now by Book et al, may

greatly alter the conclusions made in the simpler model.

Because of this, we have proposed in our 10/81-10/82 program an

extension of the Book et al theory to include finite conductivity and

E field, and the construction of a 2-dimensional r-z code for modeling

the behavior with radiation, circuit model, etc. coupled into the

dynamics.

The equations describing the motion are:

! pr(P(pr)) 1

continuity: at + z(Vz) +r r r

t z zz rrz r
p~v/Dt =VP: P(3 tv z + v z az vz + v r ar vz) = - az P

tP(atvr + vz zvr + vrrrr
) . - arP

(54)

state: P - yTP/mi + B2/8V + KB2/r BF- B2 (r,z)

VxB: 4 (rB) J B J J-cr

VxE: zE -rE zB

z r r z c t

V. J-O: Wr(rr + a 0
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Ohm's Law: Jz Min zkjT. k3T3/2 (E+ +

+ y -3/2 ( _ v) +

kG T 32 B- 2
Min{.2 z kT , 1k0 T 3 / 2 (E -r) (1 + k -7B2)

P %T 31 Z( + )(1+ _ _

Heat balance: T specified as function of discharge voltage

and 0, in simplest model, or governed by time

dependent heating and cooling rates, in more

complex model.

The radial component of J cannot be neglected because then a B-0

does not allow the instability. The constants k. in the unmagnetized

conductivity and kB in the Hall conductivity can be found in the

standard textbooks; the constant k3 (see Eq. (21)) gives the drift-speed

limited current. The constant K provides the magnetic hoop stress due

to B-line curvature. The mass density is denoted by 0, electron (and

ion) temperature by T, and fluid velocity by (vr ,vz). All field and

fluid quantities are functions of r and z. Imposing self-similar

convex profiles of P with radius (e.g., Bennett profiles) and

periodicity ih z, with only the on-axis density and Bennett radius

varying in z, may allow certain artificial but useful simplifications.

Making the ideal-MHD assumption is not admissible here, as it allows

only surface currents and cannot predict the density drop in the

necked-off regions. The fluid model described may break down when

these regions produce non-stagnated electron flows.
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CHAPTER V. CURRENT PROBLEMS

A. Improved numerical methods

As pointed out above, there are several advantages to the use of the

generalized Hertz vector Z(r,t) as a potential for the waveguide fields

driving an imploding plasma. The price of this smooth generality is that

all the observable fields are two derivatives removed from the potential.

Hence we require very accurate numerical differentiation methods for the

estimation of Ez, Be from any discrete representation, i.e. Z(xT i ) and

Z(x Ti). Moreover, as the plasma load absorbs and reflects the incoming

electromagnetic wave, the rapid decay of Ez (x,T) within the plasma demands

the resolution of the derivatives of Z(x,T) over a very small spatial

scale. Adding to the challenge, one must assess third and fourth order

derivatives in calculating the source terms in the wave equation for

Z(x,T).

The usual finite difference methods, based on polynomial interpolation,

tend to produce rather noisy estimates of higher derivatives unless the
22spatial mesh is quite dense. Recent work by Talmi and Gilat , however,

offers a solution to this problem by using a so-called smooth interpolation.

In classical analysis the error functional, measuring the global deviation

of an interpolant from the original function, is usually based on the Hilbert

norm. Minimizing error with respect to this norm does not constrain the

derivatives of the interpolant and often leads to rather bizarre behavior.

The generalization due to Talmi and Gilat which leads to a smooth inter-

polant is the invention of a norm functional which involves all higher

derivatives as well as function amplitudes in computing an error measure.

This new method has been implemented recently and has generated

encouraging results interpolating simple test functions. Function values

can be represented to 7 significant figures, and second derivatives to 4

significant figures. This sort of performance is not quite sufficient for

use with the Hertz potential, but it is quite adequate for the representa-

tions of CRE radiation and ionization dynamics required in section B, below.

The investigation at present is focused on the optimal tradeoff between the

number of sample points and the correlation width which determines the

effective coupling domain among points on the mesh. There is every reason

to believe that the satisfactory representation of third and higher deriva-

tives is within the capabilities of this new method.
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B. Alternatve thermodynamic variables for ionization dynamics

In hydrodynamic calculations requiring ionization dynamics a central

problem is the branching ratio, for external energy input to the fluid,

between electron heating and further ionization. As each new atomic

shell structure is opened to ionization (because the electron thermal energies

and radiation intensity have achieved an appropriate threshold) this

branching ratio changes radically with a large fraction of the input energy

going to further ionization rather than electron heating. On the other
DT

hand, any attempt to calculate 7e and advance the plasma state with

and eI (the chemical potential) held fixed, only to then require a fresh

value of CI and 3 at some new temperature Te, will lead to serious inaccuracy

and perhaps numerical instabilities if the ionization energy is recovered

from Te. This is why the branching ratios aT 3' aT I and (to a lesser

extent) an 3, niCI are so important. e e

The calculation of these ratios from first principles within the CRE

framework is not an easy task, but their estimation by means of the smooth

interpolation discussed above is both simple and accurate. The CRE model

implies an effective equation of state CI(Te, nI ) and3 (Te,nI) which can be

used to simplify the simultaneous calculations of electron heating and

ionization. Instead of using T one may define a new energy variable
e

36 -3T ffi )ad Te(6e

2 e = 2Te +ie and e e e

its inverse function. The appropriate hydrodynamic equations now advance

e and TI using the usual heat sources and iluxes; viz.

--3 D Dn n
2Dt eDte 2 DaT 2 IT *Dt 2 ean an 0 P~ I ~a+ 3 ~ ~ . ~ ~ +~

e e I I

D T 2 T3 (V mV) V + (Te -TI )

Dt -3 -1  - - T () T ie (55)

where the partial derivatives and functions 0 (T ) arising from the CRE
e e

model are represented by a smooth interpolant.

Present efforts in achieving this reformulation are directed toward

finding the best temperature and density domain grid and optimal inter-

polation parameters. In addition, the restructuring of present hydro-

dynamic codes to accept these new variables is underway.
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APPENDIX A

FIELD REPRESENTATIONS

The procedure for choosing Z can be formalized easily and points

out the role of a Hertz vector potential in the conventional scheme of

electrodynamics.

Field Representation Theorem:

a) Given potentials A, satisfying the Lorentz gauge condition,

the choice Z d cfdt lA(xtl) implies that E - V-Z and (obviously)

that A E c- 1 a Z.-- t-

b) Given the vector field Z, the choice A d c- 1tZ and d d VoZ

implies that A, satisfy a Lorentz gauge condition. Moreover,

the transformation Z - Z' = Z + Vi with 4 any solution of is

the generator of all restricted gauge transformations (within the

Lorentz gauge) which leave the observable fields E, B invariant.

This result is readily established, as summarized below. With A, P in the

Lorentz gauge and Z defined through A, the gauge condition on AA implies
-i

that = - VoZ and, of course, A E c 1 3Z. On the other hand, given Z

and A, defined through Z, the Lorentz gauge condition is an immediate

consequence, and simple substitution verifies that Z' as given preserves

the gauge and leaves E, B invariant. Of course, if A, are to be repre-

sented on all spacetime by one field, Z, it must be shown that only one

non-trivial propagation equation is needed for evolving this new field Z.

This is in fact the case.

Uniqueness Theorem for Z(x,t): Let initial fields E_0 and B_° be

specified on all space at some time to, together with a source field

T (equivalently P and J) on a domain (x, t > to) and boundary condi-

tions of the form c1 E(x,t) + c2 B(x,t) on any surfaces of discontin-

uity that are present. The generalized Hertz vector Z(x,t), as a

solution of V(V.Z) - VxVxZ - c- 2  Z = - 4VT, is then specified
ft C-

Al



uniquely (to within a trivial restricted gauge transformation)

and stably on (x, t > to).
-0

The proof is somewhat lengthy but, in summary, decompose Z and T into

solenoidal (Z , Tt) and lamellar (Z£, T) parts. For the solenoidal fields,

the initial specification of Et B , and J T ) is equivalent to an

initial specification of ztj and a t For the lamellar fields the
o 0

initial specification of EZ (E - 4rT) and J k is equivalent to an initial
Z2-.specification of Z it and t ZYIt " The homogeneous solution for Z must

then be selected to produce the specified boundary conditions. The speci-

fication of ZIt and ZI t required by the initial conditions thus consti-
0 0

tutes Cauchy open surface boundary conditions and a unique, stable solution

exists for the Z wave equation. The ambiguity in Z with respect to

the restricted gauge transformations can be erased by simply setting to

zero all trivial constants of integration in the inverse mapping {E0 , B0} 0
{_zl t  , t t .

0 0

I
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APPENDIX B

HERTZ VECTOR POTENTIAL FOR THE PLASMA LOADED WAVEGUIDE

Using the Green's function one can decompose any vector field b(x,t)

into its solenoidal (Vb - 0) and lamellar (V x b, = 0) components; these

projection operators can be represented

Ib d - (4)-Vx Vf dx G(x, 'x) xb (', t)

and can be used to invert the differential equations V x b = Stand V.b - S

for the field b. For the case of spacetime dependent conductivity, such

operations are central to the construction of the proper Hertz vector, because

the vector equation for A(Z) one must solve in order to obtain a homogeneous

equation for (4b) is

V xV x A (Z) - c- 1 (at + 47 ') ixV x Z + 4w_2_aoV x V xA (Z). (Bl)

C

In order to solve (Bl) one may define two vector functionals in terms

of the Greens function G(x,3) = G(x-1) and the projection operators., ".

A lamellar functional of any scalar is obtained from -, viz.

vfd- G(_-) s(_t)

is a curlless field solving V. . s. A solenoidal functional of any vector

is obtained through.L, i.e.,

1t (Xt) fC AVj ,t

is a divergenceless field solving V x V x X ) t. These functionals can

invert (Bl) whenever the RHS is a truly solenoidal field. The orthogonality

conditions (11 a,b,c) and the condition that Va.VxVxZ - 0 are sufficient to

insure a solenoidal RHS for (Bl); one must find the appropriate s and A.

For a one possibility is the commutator

Bi



and f or X, the comutator

jlvxixZ, -CVx VxZ QU ( x VxZ) + VX (VaX Z) (B2 b)

Taking the limit c-'V(x,t) -~0 in (BI) one finds that the field functional

(a) - C- a+ 4n-a)Z Z 7 VF.Z1 - {A470-x VxZ) +

(7 V x VT x Z)1 (B3)

in a solution of (Bi) provided that the comutator (B2b) is indeed a

solenoidal field, a property insured if and only if Va-.VxVxZ EVMEt = 0

as assumed. The result for _ _(Z gives

(a) .- l
V.A -C (a3 + OF) V. Z

VxVxA (a) . - (a3 + 4w'a-) VxVxz

*f or all functions a(x,t, V (x,t)) because the functionals A and IL have

been chosen so as to cancel all V~dependent terms. Noting that V*A(o) has
dnow provided the possibility of a proper gauge transformation when V.Z-

the remainder of (Bl) must be solved with a. t functional if this result is

to be preserved easily. Assume that A(Z) - (Z) +.at and the equation

determining. t is, from (El),

V V t OF V w O (Z) +ti

The complete solution is obtained by iterating for the remaining
t* unknown (solenoidal) component of A(L), i.e., g,.This results in a

spatially ordered exponential operator, i.e., IK.I > IE21 > 1"31" in
successive integrations (convolutions) with G(x,-i.Tecmlt expansion

j - of AZ) is then compactly expressed as

* B2



(Z) - e-p+J CG(X ) tt) x x A(O)(j) CB4)

to all orders in c-1 V (, t). With this solution available one finds that

Z is propagated according to

x(IZ)-vxvxz - a A (Z) - o, C9)

which properly subsumes the relation (4a) when one identifies 0 - - V .Z

and notes that V A (Z) - V "A(O) (Z). In particular, (B3) and (B4) imply

the novel gauge choice

V -A+ C-1 [3 +4w w" (x, t. V (x, t))]0 (x t) - 0 (B6)

and the scalar potential evolution (implied by (BS) or by the substitutions

for A(Z), 0(Z) in (4a)) is governed by

04 - 4c - 1 a ((, t, V (x, t)) 0 (x, t)) c- 2 32  0. (7)
d t _t

From these results it can be seen that the self-consistent retention of

the assumed orthogonality relations (lla, b, c) is possible when

a o (r, t) Y (I Vr (r, t) ), V - V (r, t), and 0 - - V .Z - V- C t, t) LO.

This is because the pure radial variation of V, F allows the wave fields to

interact coherently with the load over all axial positions and because, cf.(B7),

the radial variation in 7 is incompatible with a pure axial variation in 0 if

o is non-zero. The perfectly conducting boundary condition on the guide surface

forces the scalar potential to be attenuated everywhere once a nonzero conductiv-

ity exists anywhere in the radial direction. This coupling means that only the

ii t
transverse waves (TEM modes) arising through C (r, t) can exist in the wave-

guide formed by perfect conductors. These transverse fields are completely

adequate for the maintenance of the proper orthogonality, however, since

V a VxV x A (Z) a 0, V o "V xVx Z -_ O, V • V t O, and V o x V m 0 areQ . .. ----- "-r - E -

valid forever if valid initially.

B3



The implication of (B3 - B7) and the self-consistent retention of the

orthogonality conditions is that a proper Hertz vector has been chosen. Again

the reduction to a single propagation equation (B5) for Z has simplified the

problem, considerably extending the program of reduction available in the

simpler case. In contrast to that simpler case of arbitrary but specified

p, J, the present technique has absorbed all reflected wave components in the

non-local convolutions involving G(x, x) and has eliminated the need for an

explicit source term to produce them. In the event that Va - E cannot be

assumed to vanish, e.g. in the case of resistive guide planes, this approach

can probably be made to work but the problem is more difficult and remains under

study.

Specializing completely to the plane parallel perfectly-conducting diode

geometry and using circular cylindrical coordinates, one may integrate out the

trivial azimuthal coordinate in G(x,-x), expand the operators in (B5) through

first order in c- Vr (r,t) and V InR, and thus obtain the non-local (radial)

propagation equation for Z(r,t) - z C (r,t). Suppressing the vector notation

for Z and noting the space-time dependence of 3', this relation becomes

-22Z -+ t 4rw Z 4w c - l r, Z(rdf t) a (rI , 0
c r r c jr 1 ~ 1  r 1 )

rr

-4rc-1 In rr dr1 ri [ar ma( 'a - a r [- at + !ia Z]

(B8)

-dr_ I  dr (arz)a O v r [-1 at + 4c ] a Z 0.
r 

cc r 1

Ttre observable fields Ez B0 are then obtained from Z(r, t), the solution of

(B8), as

rE = - r a a r a Z (r, t) (9a)

B4
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B = c Z + 4. Z + 4w c-1 dr1 Z(rI t) ar 0 (r1, t)

, (1gb)

_ -__in r [ r r4( Z) c t +--fro ']

- £! dr r tn Z) (3 S C t + 4Ia+ j Z

r1 1

and the field (a Es x B then provides the self-consistent coupling to the

fluid conductor required to calculate V (r, t).

B
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APPENDIX C

COUPLiNC OF FLUID AND FIELD EQUATIONS

If (B8, and B9) are to be coupled to an annular fluid plasma load,

represented by scalar fluid fields n I (r,t) 1(rt) jT(rt) TI(r,t), and

the convection vector field V r(r,t), then one must examine the detailed

constitutive relation J' - ZE' appropriate to the plasma and verify that

all plasma behavior is compatible with the orthogonality constraints used

in the electrodynamics. Insofar as strict weakly coupled plasma theory

exhibits a linear but anisotropic Ohm's law, the simple constitutive rela-

tion used in developing the Hertz vector is not rigorously correct. However,

it is easily seen that to a very good approximation the conductivity tensor

is "diagonal on a slow timescale", i.e, the radial E, J, can relax on the

time-scale characteristic of the electron e/m to cancel the radial currents

and to produce a quasi-static ambipolar space charge and a simple quasi-static

line-image-charge radial electric field vector. In the axial direction the

simple (spacetime dependent) V(r,t) is also appropriate only on a slow time

scale as the relative electron flow velocity field relaxes to a steady state

for fixed E'.2

23
Following Braginskii one may derive two independent relations from

the kinetic theory moment equation connecting 8 J f d'v qii vtfi(xvt)
i

to the impressed fields E, B within the plasma. Here "i" is a species index

over the appropriate set of one-body LTE distribution functions for the

plasma. In the limit that radial plasma conduction currents are divergence-

less (quasi-static p ambipolar), all plasma gradients are radial, and all

neutral convection is radially directed and axially independent, these

relations (with ire, I) for the axial and radial currents becom respectively,

Cl



+m P1 m e.'
z1X M, sEz 3 ) 1-'xe re +eT ifJ (Cla)

(Vr +X r) ; {( + m, Er +c U x e + ( re m e ra r e

-me me + aj z + (I + e) W . - rT e (Clb)
mI eTe e 1

3(me T 3/2
whereT - 4 -e/ A n ,

Uz  -Jz(e ne) -

X - ambe -1

n3 n1  1 -e

and ', R are dimensionless functions of 1e Te as given by Braginskii, with

X, , denoting particular tensor components. As shown (Cla) represents an

equation of motion for an "average electron", driven by E' and a rTe and

subjected to a drag (me/eTe) Uz proportional to the velocity achieved.

On a timescale characteristic of the electron inertia this "pseudo-particle"

will achieve a terminal velocity determined by the condition U6z- O.

Similarly, (Clb) represents a force balance for an "average electron" which

is responding to the space charge field E created by pressurOand temperature

gradients and U z . Again, on an electron inertia timescale t. mpace ch4gge

field self-consistently relaxes to a state of equilibrium stress in response

to U3 , arPel arPi, arTe , i.e., X-.O.

C2
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Since the inertia of the electron fluid is quite small relative to

that of the ion component, a fully self-consistent treatment of the evolu-

tiou in Vr (r,t) which is fundamentally an ion fluid response, and Z(r,t)

(the electromagnetic field incident on the plasma), is possible in the approxi-

mation that both Uz and X relax rapidly to equilibrium values as Vr, Z evolve.

For the axial conduction current component, this approximation implies the

same constituitive relation used in developing Z in the first place, with

a quasi-static Be arising from the thermoelectric field - a T added
Wx e r e

to the waveguide field, of course. Substituting for Jz in Cla with Uz O, one

has

Jj, -IE' J athe (C2)

with

a'r t ni(r, t) Te(r t)/ (er, t),Te(r, t

and

d -
the (r,t) x (SeTe)e 1 rTe'

The conductivity al(r,t) defines the plasma location through its density-

dependent terms, if the complete expression for T is substituted;

4 e ee

(c3)
and quite properly C 0 as ne - 0 at any radius r, because A is driven

singular.

Turning to the radial convection current component, PVr the radial

rrfield of the linear image charge Er can be expressed as

C3



rX) - dr • nj? 0~t XM , 01-- (C4)

and the self-consistent X(rt) is then the solution of the integral equa-

tion

D e 1 1 T (05)
xi t r~ m m r, eT e r e]

+c 1 U+°- x-e+ e aP I
e ,e

with the fluid stress given by

DV = XEr() - (neC) - 1 "EB - -1 a + P) ()

Dt r m r e z e e) r e I

with ~ -me + 31 m and the (classically weak) viscous stress neglected.

In a strict, completely self-consistent electromagnetohydrodynamic

(EMD) field and plasma evolution in the perfectly conducting plane parallel

waveguide, one must first solve (B8) and from (B9)calculate Ez, Be;

then using (c3) determine Uz and solve the integral equation (C5) for X.

When Ez, Be and X are available, the convection field Vr can be evolved using (C6)

and used to correct the Z field through (3S). To this scheme must be

added a plasma energy equation for Te, T1 and proper equations of state

for Ps and PI"

C4



APPENDIX D

WAVE EQUATION QUADRATURES

If the two dimensional Green's function for the wave equation is

applied to

T - x XaxZ - 4rJ( IR,T1 ) (Dl)

the formal solution can be written

Z(x,T) = 4wJd0J dR(2R) dT1 92 (T-T1 1 R) (E eIRTl)

o o T

1T T-T+ 0
+-7r J df dR(2R) g2 (T-TojR)Z(X0 To) (D2)

0 o

T T-T

+ I J dJ dR(2R) g2 (T-ToJR) Z(XoT o)

0 0

22u T-R)
where x 2 x2 + R + 2xR coso and g2 (TJR) ( 2)3 Here u(T-R) is the

unit step function and T is an initial time. This relation can be the
0

basis for either implicit or explicit numerical methods because the

source term involves the solution Z(x,T) itself. The explicit methods

derive from the choice to expandd (T1 ) in a Taylor series about TO through

some fixed order; while the implicit methods arise upon noticing that 4
is itself a time derivative,

1 Idx1 X 1 kn ()Ed e(,T 1 } so that a partial integration Produces the
0

difference in g2 eover the time domain and a convolution involving 3T g2 .

The explicit methods 3re a great deal less cumbersme and more flexi-

ble with regard to interactions with a simultaneous hydrodynamic calcula-

tion so they will be developed here.

Dl



ExpandingA1(xo, To + T) through second order in T - T-T (we suppress

the Eenotation and use x (x,R,4)) and calculating the convolution integral.0

one finds T + 2 IT +2T-R)

Z(X,T) = 8Tfd JdR(2R) Zn /
0 o

+ T4~ + _+ R- [T+ R] (+ + T

4- T i T (2R) Z
+ - dol dr(2r) (T _0 A + - f a f de dR (T~ 2%( 3

o 0 0 0

where the limit E - 0 (simultaneously) in T+ = T + E, R+ - R + E is under-

stood andd E a d(X Jo), etc. The limit arises from the temporal con-
0

0
volution and step function u(T-R) in that one must integrate over T1 just

beyond the 6 function singularity in order to obtain a bounded contribution.

The calculation of the limit requires that one compute the R integration

separately near R - o, approximating c f, , "'') as constant over some
A A

small domain R .< R << T. Here, R may be defined in practice as any mesh point

close to the origin, such that 'Rn o << 1.

Performing the limit, making the changes of variable R - T(l-v2) ,

and x2 -, a, and calculating the derivatives with respect to T by Leibniz

rule produces the final form of the forward quadrature formulae. For the

Hertz potential one finds

Z(a,t W 1621R n( ) ~ ~ [ + T 4- +) = t1~
Tr v

o0

° +T
-

v+T 2 + + os (l- +I(l-_v2))
+87T fd$t Jdv v Z.n 4L- : T T~~

o o

02 0

0 T r 1 
1

+ L~ fdOfdv [Z + Ti + TZ;'C2 costWaI-v2) + 2T (1_V2))

o 0

and for its partial time derivative,

D2
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o2+ T) , 2 )[z ,n2T) _ "4 + (D5)
R+a A]4 2 -+T +'- T2-] IL2T + T " 0+2"0

AiT V

,v n ' + , + 3 2, + 2.3(1 + .,c.<,_.,,,- 1

, +-- \o v 2o o

0

2(T2cos 4sa(l-v2) + T'( l-2)). + T+ ' + T 2  + _j(jV2)) )

iT 1 2 24( 
_ )

- 8 --d- fdv v 3T + 3T' + (2,d'z+,-

0 aO K 0

0 0

+ Ya(1-v 2 ) T3COS4)

+ o i o+ 2T(1-v + 2(2Z; + Ti.) a V2)

27 and h 0arguments4

0 
0

a T(- 2) + 4(cosO Fa(-v 2) + T(-v 2 ))2 TZI

with the notation

f E 3 aZ(a, TrZ Z(a Tr0

Ja.o(a T) (o Toa)

o90 a j 4

0~ 0 0

a .d- 4 (a ) T

and the arguments

a = a + 2T cosO Vra(1-v 2 ) + T (,_V 2 )

v - i~i2

D3



The quadratures can be carried to higher order partial time deriva-

tives, but these two constitute the minimum set required to specify the

source term 4(a,T0 + T) for a subsequent time step. The quadratures

over 0 and v can be represented accurately using well-known integration

formulae 24, 25 over the unit circle once the discrete representations for

Z(a Ti) and Z(ajTi) are interpolated.

D4
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